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Multifocusing homeomorphic imaging
Part 1. Basic concepts and formulas
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Abstract

The decomposition of a total wave field recorded on a set of seismic traces on parts corresponding to different body
waves is one of the fundamental problems of data processing. The central point of this problem is the correlation procedure

Ž .for a seismic event wave on a set of recorded traces. In order to implement this procedure, it is necessary to have a local
time correction formula for a family of source–receiver pairs arbitrarily distributed around a chosen central pair. This
formula is derived in the work for a 2D seismic medium of arbitrary structure using a new homeomorphic imaging method
called multifocusing. The presentation of multifocusing is divided into two parts: the basic ideas and concepts of the method,
the time correction formula and associated geometrical relationships form Part 1. The main characteristic of the multifocus-
ing approach is the consideration of the geometry of all possible wave fronts, which could be formed in the vicinity of a
chosen central source-receiver pair. Provided that a target wave exists on a chosen central trace, then there is also a
corresponding central ray and an infinite family of surrounding wave tubes. The basic idea of the multifocusing technique is
based on the association of any pair of traces recorded in the vicinity of the central trace with certain ray tube belonging to
the family. This association can be always found. Considering this ray tube, the local time correction formula is obtained,
assuming a spherical approximation of two tube cross sections at the end points of central ray. In the case of a central ray
with non-zero offset, the formula consists of the following parameters: two velocities near the source and receiver locations,

Ž .two angles departure and arrival and two pairs of dual curvatures of tube cross-sections at the ray end points. The first four
parameters are common for all traces, the pairs of dual curvatures are, as a rule, specific for the chosen pair of traces; the
formula thus obtained could not be directly used in practice. The essential part of the first paper is devoted to the
parameterization of the family of dual curvatures. The exact formulas derived for these curvatures include as parameters, a
pair of dual curvatures of two chosen fundamental ray tubes. Different choices for the fundamental ray tubes are considered
and important relationships between the dual curvatures and spreading functions for these tubes are established. They are the

wgeneralization of the Hubral formula Hubral, P., 1983. Computing true amplitude reflections in a laterally inhomogeneous
xearth. Geophysics 48, 1051–1062 and known reciprocity relations. In the case of a zero-offset central ray, most important

for reflection shooting, the formulas derived are significantly simplified and involve four parameters only. The results
obtained can be used not only in the multifocusing method, but also in migration and forward modeling. q 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

A stack of recorded seismic traces became
one of the main steps in data processing when
multifold acquisition systems were the leading
method of collecting seismic data. It seems
impossible that a recorded total field could be

Ž .stacked or better say, averaged . From physical
point of view, meaningful averaging can be
achieved with respect to each separate body or
surface wave, because it is possible to correct
all stacked traces before stacking in such a
manner that all target wave events will be ‘‘in
phase’’. Hence, the crucial operation in the
stack procedure is time correction. In order to
do this properly, it is necessary to have a high
quality time correction formula. The term ‘‘high
quality’’ is used if the formula satisfies the two
following conditions: first, the formula should
be valid in the media of arbitrary structure and,
second, its accuracy should be sufficiently good
when dealing with different acquisition systems.
The first condition renders the method applica-
ble to any medium which could be met ‘‘in
situ’’. In practical terms it implies that the time
correction formula should be modeled indepen-
dently. The second condition means, that the
formula is valid for an arbitrary distribution of
source and receiver pairs.

These two conditions are very general and
need to be defined in greater detail. Consider
both the properties of propagating body waves
and the parameters of existing acquisition sys-
tems, the time correction procedure may be
divided into the two steps. The first step called
‘‘statics’’ is the correction for an upper zone of
rocks with a low velocity andror rapidly chang-
ing seismic properties and a reduction of arrival
times to a reference level where the properties
can be assumed to be relatively slowly chang-
ing. The second stage is the time correction
attributed to the reference level. In the follow-
ing, only this type of time correction is consid-
ered. The main theme of this paper concentrates
on reflection shooting, although the majority of

relationships obtained are applicable in more
general situations.

The creation of the theory of time correction
based on a model independent method could be
stated as a primary goal from the very begin-
ning when stacking became a necessary proce-
dure. However, the actual development of the
time correction theory was carried out in an-
other way. First, the well-known Normal Move-

Ž .out NMO was found for horizontally stratified
media. Then, the CMP time correction proce-

Ž .dure was improved in the Dip Moveout DMO
method and associated modifications under the
assumption that the velocity model of the over-
burden is known. The DMO theory was im-
proved by considering models of overburden
with increasing complexity. In reality, however,
it is very difficult to determine a velocity model
of the overburden with sufficient accuracy, es-
pecially in most interesting media of compli-
cated structures.

Thus, the conventional approach is based on
consideration of specific types of medium mod-
els and determination of time correction proce-
dures for them. The latter are used in media of
arbitrary structures which, in turn, gives rise to
uncertainty as regards their applicability.

A quite different approach is based on the
Ž . ŽHomeomorphic Imaging HI theory Gelchin-

.sky, 1988, 1989; Keydar et al., 1990, 1996a . It
starts from determination of the specific config-
uration of source-receiver pairs for which an
associated wavefront emanating from a target
object can be found without assuming the over-
burden structure. A time correction formula is
derived as a result of considering the local
geometry of the associated wavefront propagat-

Žing near a seismic line source and receiver
.locations . Each formula obtained is valid in a

medium of arbitrary structure. Parameters of the
formula are characteristics of the associated
wavefront geometry and velocity in the proxim-

Ž .ity of a seismic line reference level .
To illustrate the HI technique, consider the

Ž .Common Reflecting Element CRE method
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Ž . Ž .Fig. 1 Gelchinsky, 1988 . Assume that each
q y Žsource A and corresponding receiver A kk k

.s0, 1, . . . ,n are distributed along a seismic
line AqAy in such a way that:k k

ŽØ all rays corresponding to the pairs traces
q y.A A have a Common Reflecting Pointk k

Ž .CRP ;

Ž q y. Ž .Ø a central trace A A ™ A A records0 0 0 0

a wave normally reflected from a reflector S.
Then, for any 2D medium, the configuration

of these rays can be presented in the form of a
symbolic ray scheme as shown in Fig. 1a for
any 2D seismic medium of arbitrary structure.
The term ‘‘symbolic’’ is used in order to em-
phasize that, in fact, only the existence of such a
scheme is needed in the following.

For this ray scheme, a fictitious point source
Žcould be placed at the CRP the point C in Fig.0

.1b . A fictitious associated wavefront S, emit-
ted by this source and reaching the central point

Ž .A zero-offset point at the moment t r2, is0 0

also shown in Fig. 1b. The center of curvature
of this associated wavefront, located at the point
Ĉ , is defined as a CRE image of the CRP. The0

ˆimage point C and the fictitious wavefront S0

are shown in the image plane in Fig. 1c.
By repeating this procedure for a set of cen-

ˆtral points, one can obtain the CRE image S of
the reflector S as a locus of centers of curva-

tures of associated wavefronts emitted by a set
Ž .of fictitious sources located on the S Fig. 1c .

Ž .The boxes and crosses shown in Fig. 1b 1c
correspond to two different positions of the

Ž . ŽCRP the image points on the reflector S the
ˆ.CRE image S . For simplicity’s sake and in

order not to complicate the figures, the appro-
priate central points and ray paths are not shown
in Fig. 1b,c.

It could be shown that the reflector S and its
ˆCRE image S are locally topologically equiva-

Ž .lent. This means that each point or element of
the surface S one-to-one mapped in one point

ˆŽ .or element of the image S and vice versa.
Following the mathematical terminology, this
image is called the CRE homeomorphic image
Ž . Žor simply the CRE homeomorphism Gelchin-

.sky, 1988, 1989 . The proof of the topological
equivalence of the reflector and its group home-
omorphic image is given in the paper by
Gelchinsky and Keydar, 2000. The proofs for
other types of HI images are similarly executed
with insignificant changes.

Now we could exploit an obvious property of
the proposed mapping: the equality of time
increments for the reflected and fictitious wave-
fronts corresponding to the same locations of

Ž .source–receiver pairs Fig. 1a,b . There is in-
deed only one difference between the above-
mentioned figures: the ray directions. On the

Ž .Fig. 1. Ray scheme for the CRE mapping. a Ray scheme corresponding to the CRE distribution of source–receiver pairs.
Ž . Ž . Ž .b Ray scheme corresponding to a fictitious source located at the Common Reflecting Point CRP . c Representation in the

ˆimage plane the fictitious front and the CRE reflector image S.
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left parts of Fig. 1a,b they are opposite, so the
descending and ascending wave fronts do not

Žcoincide the descending front is not shown on
.Fig. 1a . However, the time increments Dt

Ž y y. Ž y y.A B and Dt B A for the descendingk k k k

and ascending wavefronts are equal.
For simplicity’s sake, let us sume that the

Ž q y.velocity Õ near the seismic line A A A is0 k 0 k

constant and the fictitious wavefront is spherical
Ž . n nFig. 1c . Strictly speaking, the ray arcs B Ak k
Ž .nsq or y and the wavefronts S on Fig.
1b,c are the same. However for visual estima-
tion of the degree of approximation, these arcs
and the front are shown in Fig. 1c taking into
account two assumptions. Under these assump-
tions, it is easy to obtain the following time

Žcorrection formula Gelchinsky, 1988; Rabbel et
.al., 1990; Steentoft and Rabbel, 1992 .

Dt st AqC Ay yt A C AŽ .Ž .k k 0 k 0 0 0

sDtqqDty 1Ž .k k

where

q 2 q
Dt s r q2 r sin b D xžk 0 0 0 k

1r22qq D x yr r2Õ , 2Ž .Ž . /k 0 0

y 2 y
Dt s r q2 r sin b D xžk 0 0 0 k

1r22yq D x yr r2Õ , 3Ž .Ž . /k 0 0

and

D x ÕsAÕ A sx Õyx Õsqory . 4Ž . Ž .k k 0 0

A seismic line is considered as the axis x
forming an acute angle of entry b with the0

ˆŽ .central ray C A or C A of the fictitious0 0 0 0

wavefront S, having a radius r at the point0

A .0

Taking into account Snell’s law which gov-
Žerns reflection, it has been shown Gelchinsky,
.1988; Koren and Gelchinsky, 1990 that the

offsets D xq and D xy of the k-the source–re-k k

ceiver pair should be disposed along the seismic
line according to the following binomial distri-
butions

2 2q y
D x sy qa y , D x syy qa yŽ . Ž .k k k k k k

5Ž .

with y is a variable and the coefficient ak

determined by the formula

assin b rr q2 cos b QX rQ3r2 , 6Ž .0 0 0 0 0

Ž . X XŽ .where Q s Q us0 and Q sQ us0 are0 0

the 2D spreading function and its derivative
with respect to the radiation angle u at the CRP
Ž .C , calculated at the central point A . The0 0

coefficient a is called a factor of asymmetry
Ž .Gelchinsky, 1988 .

Where the maximum offset of a gather is
rather large, the spherical approximation of the
wavefront may be not sufficient. In such a case,
a next non-spherical approximation of the asso-

Žciated wavefront should be used Gelchinsky
.and Keydar, 1993 .

As well known in mathematics, the homeo-
morphism of a surface is not unique. This means
that there are many types of topologically
equivalent mapping, and, therefore, other types
of reflector mapping using HI images have been
proposed. One of these is the Common Evo-

Ž .lute Element CEE method with a zero-offset
source–receiver pair distribution; the others are

Ž . Žthe Common Source Receiver Point CS-
Ž . . ŽRec P and Combined HI methods Gelchin-

.sky, 1989; Keydar et al., 1990, 1993, 1996b .
Each type of HI method uses a stack of specifi-
cally distributed and time corrected traces. The
stacked trace obtained may be regarded as
though a field reflected from an interface were
focused at an image point corresponding to the
type of HI stack performed. This correspon-
dence makes sense only in the context of kine-
matics and, therefore, it is more correct to call
this a quasi-focusing stack. For convenience,
however, we will call this stack focusing in the
following.
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2. The generalization of the HI mapping

All the HI methods mentioned have impor-
Žtant merits such as, enhancing of target waves;

preserving resolution; applicability to media of
.arbitrary structures but they also have an im-

portant drawback. In each method, as in conven-
tional techniques, a stack of about n traces is
performed if a n fold acquisition system is
used. However a plurality of traces, recorded by
this system in the vicinity of a fixed central

Ž .trace, can be approximated by m=n traces, if
each CSP array consists of m traces. Thus, a
significant part of the information recorded by
the multifold system is not used by these stack-
ing techniques.

In order to increase the amount of traces
used, a generalization of the HI technique was

Ž .proposed Gelchinsky and Keydar, 1993 . Ac-
cording to this generalization, a source and re-
ceiver configuration, used in the HI mapping,
should possess the following property: a family
of rays leaving sources and a related family of
rays arriving at receivers should form two-ray
congruencies, each of them having an orthogo-

Ž .nal front in the case of isotropic media in the
vicinity of source and receiver locations. This
type of mapping may be applied in rather gen-
eral situations, where sources and receivers are
distributed along curved smooth lines arbitrary
positioned in a vertical plane with a central ray,
non-normally reflected.

One possible configuration, satisfying the
formulated conditions, is shown in Fig. 2. This
type of HI mapping is associated with two
fictitious fronts: one leaving a source line and
the other coming to a receiver line. Thus, in the
general case the two images are constructed.
This type of HI mapping is also used in the

Ž .Common Converting Element CCE method
Ž .Gelchinsky, 1989 .

The proposed modification of HI mapping
significantly enlarges the number of traces that
can be used in the stack. However, it does not
cover the whole plurality of traces recorded in
the vicinity of a fixed central ray. Here we

Fig. 2. Ray scheme illustrating homeomorphic imaging for
source–receiver pair configuration corresponding to two

Ž . Ž .fictitious fronts. A A A or A A A is thesy1 so sq1 ry1 r0 rq1

source or receiver line, S is the element of the reflector,
C , C , C are reflection points, A C A is the centraly1 0 r s0 0 r0

Ž .ray, S S is the fictitious front associated with sourcess r
ˆ ˆŽ . Ž .receivers front, S S is the element of caustic of thes r

Ž . Ž .front S S or the source receiver image of the reflec-s r

tor element S.

present a new HI technique, multifocusing,
which allows the stack to be utilized by a
plurality of traces containing information about
a certain area around a particular reflection
point.

One can see that the two congruencies of
rays, considered earlier, form a ray tube sur-

Ž .rounding the fixed central ray Fig. 2 . A cross-
section of the ray tube at each end point of the

Ž .central ray is an element part of the one of the
mapping wavefronts. The proposed generaliza-

Ž .tion of the HI mapping Gelchinsky, 1997
comprises an association of any pair of traces
with a certain ray tube surrounding the central

Ž .ray Fig. 3 . The selected pair consists of a fixed
Ž y q .central trace u A , A ,t and another trace0 0

Ž y q .u A , A ,t selected from a plurality of tracesj i
Ž .is0, 1, . . . ,m; js0, 1, . . . ,n . The two re-
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Ž .Fig. 3. Ray tube corresponding to a pair of traces rays . S
is the element of reflector, AyC Aq is the ray corre-0 0 0

sponding to the fixed central trace, AyC Aq is a rayj i j i
Ž y q . yŽ q.corresponding to a variable trace u A , A ,t , b b isj i 0 0

Ž . ythe angle of departure arrival at the central point A0
Ž q. y Ž q. Ž . yA , S S is a front leaving arriving the point A0 i j i j 0
Ž q. y Ž q. yA , r r is the radius of curvature of the front S0 i j i j i j
Ž q. y Ž q. Ž .S , E E is the source receiver image pointi j i j i j

y Ž q.located on a caustic of the front S S .i j i j

flected rays AyC Aq and AyC Aq corre-0 0 0 j i j i

spond to this pair. The dual cross-sections Sy
i j

and Sq of the associated ray tube T at thei j i j

points Ay and Aq are orthogonal to both0 0

selected rays.
It is obvious from a geometrical point of

view that this association always exists. If the
distances

D xqsxq yxq Dxysxyyxy 7Ž .i i 0 j j 0

are not very large, a spherical approximation of
the wavefront elements Sq and Sy is applica-i j i j

ble. In the spherical approximation, the corre-
spondence between the two chosen rays
AyC Aq and AyC Aq and the ray tube T is0 0 0 j i j i i j

unique.
Assuming that radii ry and rq of the duali j i j

spherical fronts Sy and Sq are known, onei j i j

can derive a formula for the time correction.

The geometrical consideration is similar to that
used in the CRE theory by finding the expres-

Ž . Ž .sions 1 – 3 . In this case the time correction is
determined by the sum

Dt sDtyqDtq . 8Ž .i j i j i j

Ž .where the first second term is the time correc-
y y Ž q q.tion corresponding to the arc A B A B ofk k k k

Ž .the central ray near the source receiver . As
can be seen from Fig. 3, each term in the last
equation is determined by the expressions

DtqsAqBqrÕq , DtysAyByrÕy. 9Ž .i j i i 0 i j j j 0

Thus, in the spherical approximation, we obtain
the following formulae:

2y y y y y
Dt s r q2 sin b r D xŽ .ži j i j 0 i j j

1r22y y yq D x yr rÕ , 10Ž .Ž . /j i j 0

and

2q q q y q
Dt s r q2 sin b r D xŽ .ži j i j 0 i j j

1r22q q qq D x yr rÕ 11Ž .Ž . /j i j 0

yŽ q.where Õ Õ is the velocity near a source0 0
Ž . yŽ q.receiver location and b b is the angle of0 0

Ž . yŽ q.emission entry at the central point A A .0 0

Time correction depends on the parameters
sin by, sin bq, Õy and Õq which are common0 0 0 0

for all traces recorded around the fixed central
points Ay and Aq and the two parameters ry

0 0 i j

and rq which are specific for the chosen pairi j

of traces AyAq and AyAq. For certain collec-0 0 j i
Ž .tion of traces like CRE, CEE configurations ,

the pair of dual radii ry and rq is the same fori j i j

all traces belonging to the that configuration. In
general, however, values of the radii are differ-
ent for different pairs. It is useful to note the

Ž .validity of the formulae 10–11 . A simple geo-
metrical consideration used by finding the for-
mulae is applicable to the offsets D xq andi

y Ž .D x , measured along straight not curved linesj
Žarbitrarily situated in the vertical plane see, for

.example, Fig. 2 .
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Ž . Ž .The formulae 10 – 11 are not suitable for
practical use owing to the a huge number of
parameters ry and rq which is about doublei j i j

the number of traces. It means asymptotically
that the number of parameters is infinite.

The main part of this paper is devoted to
parameterization of a family of dual radii ry

i j

and rq. It will be shown that this infinite familyi j

of radii depends on the abovementioned com-
mon parameters and two pairs of basic dual
radii.

3. The parameterization of the family of dual
wavefront curvature associated with the fixed
ray

This section is devoted to the parameteriza-
tion of the family of the dual curvature at the

Žend points of the fixed ray Berkovitch et al.,
.1994; Berkovitch, 1995; Gelchinsky, 1997 . The

formula derived is valid for any 2D ray having
two end points arbitrarily situated in a vertical
plane.

Here, we apply the well-known system of
linear equations of dynamic ray tracing
ˆŽ .Cerveny, 1985 . The consideration in this sec-

tion is performed at the mathematical level. The
procedure for formulae derivation and the nota-
tion used seem, at first glance, a little sophisti-
cated, although the proposed idea and technique
used are simple. We decided, therefore, to pre-
sent the idea and a short scheme of derivation at
the beginning of this section.

It has been shown that the ray tube T sur-
rounding a fixed central ray can be associated
with two source–receiver pairs corresponding to
two traces. The dual radii of the cross-sections
of the ray tube at its end point are the parame-

Ž . Ž .ters in the time correction formulae 10 – 11 .
Those formulae determine a time correction of
one current pair of traces with respect to a
central trace. Each of the sets of ray tubes and
the corresponding dual radii pairs is asymptoti-
cally infinite. Our aim is to determine formulae

expressing the pair of dual radii using two pairs
of dual radii designated as basic. It is conve-
nient from a technical point of view to consider
the wavefront curvature k instead of the radius
r in the following.

The ordinary equation governing the change
of curvature along a fixed ray could be used to
find the abovementioned formulae. However this

ˆŽequation is a nonlinear, Riccati types Cerveny,
Ž . .1985, p. 42 Eq. 5 .15 and Riccati equations

are very difficult to handle. We have, therefore
used another way.

The well-known system of dynamic ray trac-
ing is used for finding the abovementioned for-
mulas. In the dynamic ray tracing approach, the

Ž Ž .curvature is expressed by the ratio Eq. 12 in
.the following of two functions, the one is Q,

which is the geometrical spreading, and the
another, P, that is connected with a change of
angles between rays. The functions Q and P

Ž .satisfy the system of two linear Eq. 13 . A
Ž . Ž .general solution Q t and P t of the system is

Ž .presented as a superposition 14 of the two
basic solutions Q , P and Q , P with arbi-1 1 2 2

trary constant a and b. It means that an arbi-
Ž Ž .trary pair of curvature or the functions Q t

Ž .. .and P t can be found using a the formulas
Ž . Ž .14 and 12 with a help of the two basic

Ž . Ž . Ž . .solutions Q t and P t is1 or 2 or b thei i
Ž .superposition formula 15 obtained from the

Ž . Ž .relations 14 and 12 with a help of the two
Ž . Ž .basic wavefront curvatures k t and k t .1 2

In order to find the expressions for the con-
stants a and b, the basic solutions Q and Q1 2

are chosen, using a special type of the boundary
Ž .conditions 18 at the ray end points. One of

Ž .them is called the ES equal spreading solution,
because the cross-sections of the corresponding
ray tube T at the ray end points are equal. Thee

Žanother solution is called AES anti-equal
.spreading solution, since the spreading at the

end points of the ray tube T have the equala

modules and the opposite signs. It is shown in
the process of the derivation, that the superposi-

Ž .tion formula 15 can be transformed to the Eq.
Ž .20 giving the parametric description of the
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family of the dual curvatures with a help of the
two basic dual curvatures at the end points of
the fixed ray.

Ž .The derived formulas 20 for the curvatures
of the end cross-sections of an arbitrary ray tube
allow to go to the further consideration of multi-
focusing theory. The proposed approach can be
also applied to finding many useful expressions
in the case of different source–receiver configu-

Žrations. In particular, it is shown the relations
Ž ..23 , that a curvature of a front radiated by a
point source located at one end point of the
central ray and recorded at the another end point
is equal to a half-sum of the curvature of the ES
and AES wavefronts at the recording points.

Then the other pair of solutions of the linear
Ž .system 13 is chosen as a basic one. In this

case, the basic solutions Q and P corre-p pm m

spond to the point source located at the point
A . As result of algebraic manipulations withm

Ž .the superposition formula 15 , the formulas
Ž . Ž .28 – 29 determining the relation between the
inverse spreading qs1rQ in the case of a
point source and the curvatures of the ES and
AES wavefronts are found. These formulas are

Ža generalization of the Hubral formula Hubral,
.1983 for cases when a central ray has not-

coincident end points.
Now we set to the detailed consideration of

the circumscribed above scheme. As it was said
before, the well-known system of equations of

ˆŽdynamic ray tracing is used Cerveny, 1985 p.
Ž . .43 Eq. 5 .23 . The system governs the behavior

Ž . Ž .of two functions Q t and P t associated with
a wavefront curvature by the relation

k t sÕ t P t rQ t , 12Ž . Ž . Ž . Ž . Ž .
where t is the time of propagation along the ray
measured from an original point M to a cur-0

Ž . Ž .rent point M t and Õ t is the velocity at the
Ž .point M t .

Ž .The function Q t is called spreading func-
tion because it is equal to a square of a geomet-
rical spreading of a surrounding ray tube. The

Ž .function P t is connected with a change of
angles between rays.

The dynamic ray tracing system has the form

dQ d P
sÕÕ P , syÕÕ Q, 13Ž .s lld t d t

where Õ is the first derivative of Õ in thes

direction s along the ray and Õ the secondll

derivative of Õ in the direction l orthogonal to
the ray.

Ž .A general solution of the system 13 can be
presented as a superposition

Q t saQ t qbQ t , P tŽ . Ž . Ž . Ž .1 2

P t saP t qbP t 14Ž . Ž . Ž . Ž .1 2

of the two basic solutions: Q , P and Q , P1 1 2 2

with arbitrary constants a and b. A choice of
some particular solution is carried out by assign-
ing special values to a and b.

After substitution Q and P from the Eq.
Ž . Ž .14 , the expression 12 takes the form

k t sÕ t aP t qbP t r aQ tŽ . Ž . Ž . Ž . Ž .Ž1 2 1

qbQ t , 15Ž . Ž ..2

which is transformed by simple manipulations
to the relation

k t s k t qs k t r 1qs t , 16Ž . Ž . Ž . Ž . Ž .1 g 2 g

where

s t sg Q t rQ t , gsbra. 17Ž . Ž . Ž . Ž .g 2 1

Ž . Ž .k t and k t are basic curvatures correspond-1 2
Ž .ing to two basic solution in formula 14 Now

we specify a choice of the basic solution. The
basic spreadings Q sQ and Q sQ are cho-1 e 2 a

sen according to the following condition deter-
yŽ .mined at the ray end points A ts0 and

qŽ .A ts t0

QqsQysQ , QqsyQysQ , 18Ž .e e 0 a a 0

where

QqsQ Aq , QysQ Ay kse or a .Ž . Ž . Ž .k k k k

19Ž .

The function Q is called the equal spreadinge
Ž . ŽES solution because the spreadings cross-sec-

.tions of the corresponding ray tube T are equale
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at the ray end points. The function Q is nameda
Ž .the anti-equal spreading AES solution because

the spreadings at the end points have the equal
modules and the opposite signs. In the follow-
ing entities referring to the ES and AES solution
are labeled by the subscripts e and a correspond-
ingly.

Ž .Using the conditions 18 we transform the
Ž .relation 16 to the form

kq qg kq kyyg ky
e a e aq yk s , k s 20Ž .g g1qg 1yg

Ž .The expression 20 give a parameterized de-
scription of the family of the dual curvatures at
the end points of the fixed rays. The parameters
are the two pairs of curvatures: kq, kq and ky,e a e

ky. The derived expressions serve as a satisfac-a

tory basis for the further consideration of the
Ž .multifocusing. However, the expressions 15 –

Ž .17 could also be applied for finding many
important and useful relations between spread-
ing functions and wavefront curvatures for dif-
ferent source–receiver configurations.

Let us consider a point source located at one
n Ž .of the end points A , nsq or y and labeled

by a subscript p . The boundary conditions cann

be written in the form

Qn s0, Qn kn s1, P n s1rÕ 21Ž .p p p p nn n n n

Taking into account that a curvature kn ispn

infinite at the point An, we obtain from the Eqs.
Ž . Ž . Ž .17 , 20 and 21 the following relationships
for the coefficients a, b and g

g sy1, g s1, a syb , a sbpq py pq pq py py

22Ž .

and the important formulas

ky s kyqky r2, kqŽ .p e a pyq

kq s kqqkq r2 23Ž .Ž .py e a

for the dual curvatures.
Ž .Eq. 23 shows that a curvature of a wave-

front, emitted by a point source located at one

end point of the ray and recorded at another end
point, is equal to a half-sum of the curvatures of
the ES and AES fronts at the point of recording.

It is convenient for the following to change
the basic solutions Q , r and Q , r , selecting1 1 2 2

the point source wavefronts as the basic ones:

Q sQq s0, k skq s`, Q sQy s0,1 pq 1 pq 2 py

k sky s`. 24Ž .2 py

The selected basis corresponds to the boundary
Ž .conditions 21 . Using these conditions and the

Ž .Eq. 14 , we find the relations

QqsbQq , QysaQy 25Ž .py pq

Ž .for the general solution 14 and

b Qq sa Qy ,b Qq sya Qy 26Ž .e py e pq a py a pq

for the ES and AES solutions determined by the
Ž . Ž . Ž .Eq. 18 . Using the expressions 17 and 26

we find the following formulas

gsg sb ra sQy rQq ,e e e pq py

g syQy rQq syg 27Ž .a pq py

Ž .Substituting the values g and g from Eq. 27e a
Ž .into Eq. 15 , obtaining equations for a curva-

ture kn and kn and solving for Qy and Qq ,e a pq py
we find

qy s1rQy s kqykq r2, 28Ž .Ž .pq pq e a

and

qq s1rQq s kyyky r2 29Ž .Ž .py py e a

The derived formulas show that an the inverse
spreading q of a wavefront, emitted by a point
source located at one ray end point and ob-
served at another end point, is equal to a half
differences between curvatures of the ES and
AES wavefronts, propagating in the opposite
direction from the observation point to the
source location.

In order to complete considerations of the
formulas binding curvatures and spreading func-
tions in different cases, we recall the reciprocity
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Fig. 4. Ray tube corresponding to the CRE configuration. S is the element of reflector; A C A is the normally reflected0 0 0
Ž . y q Ž y q . y Ž q.ray related to the central trace u A , A ,t ; A C A is a reflected ray corresponding to the trace u A , A ,t ; S S0 0 j 0 i j i i j i j

Ž . y Ž q.is the element of the fictitious front leaving arriving the point A in the direction of the normal n n ; r is the radius0 i j i j cre
q ˆ Ž .of curvature of the front S ; C is the CRE image of the CRP point C .i j cre 0

ˆŽrelation for the spreading function Cerveny,
Ž . .1987, p. 6.25, Eq. 2 ; see also pp. 6.24–6.25

Qq rÕqsQy rÕy. 30Ž .py pq

Substituting the spreading function from the last
Ž . Ž .formulas in Eqs. 28 and 29 , we obtain the

relation

kqykq rÕqs kyyky rÕy 31Ž .Ž . Ž .e a e a

Taking into consideration the last relation, we
see that only three quantities of the four curva-

n n Ž .tures k and k nsq or y entered ase a
Ž .parameters in expression 20 , are independent.

Ž .Similarly, relation 31 could be considered
as a reciprocity principle for the differences in
curvature of the ES and AES wavefronts.

If a plane wavefront element labeled by the
subscript p or p leaves point Aq or Ay,q y
then one of the conditions kq s0 or ky s0 isp pyq

satisfied. Using these conditions and the expres-
Ž .sion 20 , we obtain the relations

g sykqrkq , g skyrky . 32Ž .p e a p e aq y

Substituting the values from the last formulas in
Ž .Eq. 20 , we find the equations

kykqqkqky
e a e ayk s , 33Ž .p q qq k qke a

kykqqkqky
e a e aqk s 34Ž .p y yy k qke a

The interesting relation

kq ky skq ky 35Ž .p p p py q y q

Ž . Ž . Ž .follows from Eqs. 23 , 33 and 34 . It could
be interpreted as a reciprocity relation for a
product of curvatures of wavefronts, observed at
the two ray end points and originating from a
point source and plane wave at the opposite end
points.

4. Parameterization of a family of wavefront
curvatures for normally reflected ray

The expressions derived for a family of dual
curvatures and their spreads are essentially sim-
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Fig. 5. Ray scheme for multiple corresponding to the
Ž .zero-offset configuration of source–receiver pairs. S S1 2

Ž . Uis the first second reflector; A C A C A is the double0 1 2 0

circle ray of multiple, in general, the angle departure by
0

is not equal to the angle of entry, i.e., by/ bq.0 0

plified in the most interesting special case, while
the end points Aq and Ay coincide and the0 0

fixed ray is a normally reflected ray.
Using a geometrical consideration, it is possi-

Žble to show that in this special case the ES and
. Ž .AES ray tube goes to the CEE and CRE ray

tube.
In order to illustrate this point, it is necessary

to reinterpret the CRE ray scheme, shown in
Fig. 1, in the terms of a ray tube T , having thecre

y Žtwo cross-sections at the endpoint A ™A the0 0
.left side of the tube in the Figs. 1 and 4 and at

q Žthe end point A ™A the right side of the0 0
.tube in Figs. 1 and 4 . Dividing the fictitious

Ž .wavefront S at the central point A Fig. 10

into left and right parts, we can consider its left
part as one end cross-section Sq of the ray
tube T , corresponding to a wave traveling tocre

the CRP, and its right part as another end
cross-section Sy related to a wave arriving at

Ž .the CRP Fig. 4 .
In this case, the spreadings Qq and Qy ,cre cre

corresponding to the sections Sq and Sy are
bound by the relation

Qq syQy at the point A 36Ž .cre cre 0

because the CRP is a focusing point. This rela-
Ž .tion coincides with condition 18 for the AES

tube in the general case. It is also clear from

Figs. 1 and 4, that the angles of emission and
entry and the curvatures of the end cross-sec-
tions are linked by conditions

bqsbysb , k skqsyky 37Ž .0 0 0 cre a a

ŽAddressing the CEE ray scheme Gelchinsky,
1989; Keydar et al., 1990; Gelchinsky and Key-

.dar, 2000 and applying a geometrical consider-
ation similar to that used above, we find the
boundary conditions

bqsbysb , Qq sQy ,0 0 0 cee cee

k skqsyky 38Ž .cee e e

for the CEE case.
It is important to note, that the conditions

Ž . Ž .37 and 38 correspond to a normally reflected
ray and they are not satisfied for most types of

Ž .multiples Fig. 5 .
In the general case, the inequalities

q y < q< < y< < q< < y<b /b , k / k k / k 39Ž .0 0 e e a a

are true for multiples, even if the ray end points
coincide. Only in horizontally stratified media
are there symmetrical multiples, which is invari-
ant with respect to a change in succession of

Ž . Ž .points of reflection, the conditions 37 and 38
Ž .are valid, if the end points coincide Fig. 6 .

Ž .Fig. 6. Ray schemes for the two versions analogs of the
same type of multiple in a horizontally stratified medium.
The corresponding angles of departures and entry are equal
in the both cases, because seismic properties of the model
at the points AUX , CY, CY and the points AUY , CY, CY

1 2 1 2

correspondingly are equal.
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Ž . Ž .Due to conditions 37 and 38 the expres-
sions for wavefront curvatures and spreading

Ž .functions are simplified. Expressions 20 take
the forms

k qg k k yg kcee cre cee creq yk s , k s , 40Ž .g g1qg 1yg

It is useful to bear in mind that the signs of the
y Ž . Ž .wavefront curvature k in Eqs. 20 and 40

correspond to the sign of the incident wave
Ž .front Fig. 4 formed by sources and is opposite

to the sign of curvature of a fictitious wavefront
which is entered into the formulae for time

Ž . Ž .correction 9 and 11 .
The formulae for the wavefront curvature

Ž . Ž . Ž .23 and the inverse spreading 28 – 29 in the
case of the point source are transformed to the
relations

k s k qk r2,Ž .p cee cre

q s1rQs k yk r2 41Ž . Ž .p cee cre

The equation for q was first obtained by Hubralp
Ž .1983 . He proposed to use it for a so-called
true amplitude construction. Using the second

Ž .formula from Eq. 41 , one could correct the
observed amplitudes of reflected waves for the
geometrical spreading if the curvatures k andcee

k are determined with the help of some tech-cre
Ž . Žnique for instance, by an optimal stack Tygel

.et al., 1992 . This true amplitude technique is
successfully used in reflection wave processing
Ž . Ž .Schleicher et al., 1993 . The expressions 33 –
Ž .34 for the radius of the wavefront curvature
recorded at one end of the ray tube T , if api

plane wave element is entering on other side,
can be transformed to the formula

rqs1rkq s r qr r2sry . 42Ž . Ž .p p cee cre py y q

for the radius of the wavefront curvature. An
interesting result is obtained if the radius of one
cross-section of a ray tube is infinite, then the
radius of another tube cross-section is equal to
half the sum of the radii of the CEE and CRE
wavefronts.

5. Discussion and conclusions

This work was originally started with a view
to finding a local time correction formula for a
set of seismic traces arbitrarily distributed
around each central trace recorded by a multi-
fold acquisition system in a 2D medium. We
took, as a basis, the geometrical HI approach,
which considers the geometry of wave fronts

Žassociated with a special configuration CRE,
.CEE, CSP etc. of source–receiver pairs. The

generalization proposed in the paper is an asso-
Žciation of each pair of traces one is a fixed

central trace and the second is any trace, taken
.in the vicinity of the first with a certain ray

tube surrounding a central ray connecting the
central source and receiver. It is very easy, in

Žsuch a general approach, to find in a spherical
approximation of cross-sections of the ray tube

.at the central ray end points the time correction
formula for source–receiver pairs arbitrarily dis-
tributed along two straight lines located in the
vertical plane. In order to render the formula
suitable for practical use, we find the parameter-
ization of an infinite family of all possible pairs
of dual curvatures of the ray tube cross-sections.
The resulting solution depends on the pair of the
dual curvatures of two fundamental ray tubes.

The general approach proposed facilitates de-
riving not only the time correction formula
needed for multifocusing, but also finding a set
of very important relationships between curva-
tures and spreading functions of ray tubes for
different configurations of sources and receivers
located on two straight lines. These relations
enable us to find the spreading function for the
CSP configuration for each central ray connect-
ing two points on these lines, as one of parame-
ters of multifocusing processing of recorded

Ž .data one choice of basic ray tubes . Using
another choice of basic dual curvatures, the
spreading function is calculated with the help of

Ž Ž . Ž ..the derived relationships Eqs. 28 and 29 ,
which are the generalization of the Hubral for-

Ž .mula Hubral, 1983 on an arbitrary configura-
tion of source–receiver pairs in the vertical
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plane. Multiplying each wave field by the calcu-
lated spreading function, a so-called true ampli-
tude of wave field can be determined. This true
amplitude can be attributed to some wave field
formation propagating without geometrical
spreading. This formation can be called a
pseudo-plane wave, taking into account that a
major characteristic of plane waves is propaga-
tion without geometrical spreading. The
pseudo-plane wave also propagates in an elastic
medium between interfaces with an invariable
amplitude, which is equal to the product of
refraction and reflection coefficients along the
central ray.

The possibility of finding corrected traces
formed by pseudo-plane waves by processing
recorded wave fields, opens up a very good
prospect for a migration method. The results
obtained also permit modifying the formulation
of a forward problem and computational algo-
rithms in cases of multifold acquisition systems

Žsituated on two lines see, for example, Koren
.and Gelchinsky, 1990 . While modeling wave

fields of a body wave in the case of multifold
system, one could restrict oneself to the calcula-
tion of kinematic attributes and amplitudes of a
pseudo-plane wave along of a set of selected
central rays. The kinematic attributes include:
propagation time between end points of the
chosen central rays, angles of departure and
entry and a pair of dual curvatures correspond-
ing to two chosen basic ray tubes. For example,
in the case of reflection shooting, the CRE and

Ž .CEE curvatures or Q and P functions at the
end points of normally reflected rays can be
chosen as a pair of basic parameters. Knowing
the kinematic attributes of a pseudo-plane wave,
it is possible to determine the travel time for a
ray connecting any pair of points situated on the
end lines using the formulae derived in the
paper. In a spherical approximation applied,
there is only one restriction on the length of
source and receiver offsets.

The results obtained have paved the way to
significant improvements in solving kinematics

Žinverse problem Berkovitch and Gelchinsky,

.1989; Gelchinsky and Keydar, 1993 . The dual
and reciprocity relationships could be used as
certain control conditions through the construc-
tion of the ‘‘true’’ kinematics seismic model.
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